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We show that the local expression of the electrostatic potential of a point charge 
suggested from the equivalence principle is different of the one resulting from the 
global consideration in the Schwarzschild space-time. 

1. INTRODUCTION 

The origins of general relativity are mainly based on two general 
principles: the principle of general covariance and the principle of equiva- 
lence. The latter states that in a small region of space-time gravitational 
forces are indistinguishable from inertial forces. Thus it is impossible, on the 
basis of purely local experiments, to distinguish between these two forces 
(Einstein, 1916; Tonnelat, 1971; Ehlers, 1973). 

I n  special relativity, it is possible to choose an inertial coordinate 
system such that a free particle should have no acceleration. For the special 
coordinates used, the metric tensor of Minkowski space-time has the follow- 
ing form: 

d s 2  = ( d x 0 ) 2  _ (dx )2 _ (d 2)2 _ (1) 

Except for the gravitational law, one postulates the standard expressions of 
the laws of physics in this space. In particular Maxwell equations may be 
written in Minkowski coordinates as 

~,~F '~ = Ja  and 0~,F~, + 0oFv, , + ~v F,,p = 0 (2) 

In general relativity, at every space-time point one can consider a 
region small enough so that the gravitational field is sensibly constant 
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throughout it. There always exists a coordinate system covering this region 
in which the metric can be transformed in the form (1). That is the locally 
inertial coordinate system such that the laws of physics, by virtue of the 
principle of equivalence, have the same form as in an inertial coordinate 
system in Minkowski space. But this principle is not sufficient for writing 
the equations of laws of physics in general relativity. In fact, the equations 
are postulated by adopting a principle of minimal gravitational coupling. 
Thus the generalization of Maxwell equations (2) in curved space are the 
following equations: 

v,,F~t~=J ~ and V ,~F~v + V t~Fv,~ + V ~,F,q~ = 0 (3) 

Now what is the problem? In the manner described above, in this 
infinitely small region of space-time, a homogeneous gravitational field is 
equivalent to an accelerated coordinate system in Minkowski space in the 
sense that the form of the equations of laws of physics are the same in both 
cases. However, one should not infer that local measurements will be 
identical because the solution of the equations in a locally homogeneous 
gravitational field are the restriction of the global solution determined in the 
global space-time taking into account the boundary conditions at the 
infinity. The purpose of this paper is to show, in a particular situation, that 
this is true. Our approach confirms, by an alternative point of view, the 
recent result of Smith and Will (1980). 

We consider a point charge at rest in the Schwarzschild space-time. The 
influence of the electromagnetic field on the metric is assumed to be 
negligible. In a small neighborhood of the position of the charge, the 
gravitational field is a constant, static, and homogeneous gravitational field. 
In Section 2, we use in our small region the electrostatic potential calculated 
from a uniformly accelerated coordinate system in Minkowski space. In 
Section 3, we deduce the electrostatic potential in our small region from the 
known electrostatic potential in Schwarzschild metric. In Section 4, these 
results may help us investigate the questions raised in the above paragraphs. 

2. POTENTIAL SUGGESTED BY THE PRINCIPLE OF 
EQUIVALENCE 

Firstly, we are going to verify that in a small neighborhood of the point 
in Schwarzschild space-time the gravitational field is homogeneous. In fact 
one can take a line because the metric is static. We start from the 
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Schwarzschild metric in standard coordinates: 

ds2 = (1-2--~-m ) dr2 r 1--1m/r dr2-r2dO2-r2sinzOd~p2 (4) 

and we consider a line (C) located at r = R, 0 =  ~r/2, and rp=0. We 
introduce a coordinate system (y0, y~) which is related to the standard 
Schwarzschild coordinates by the transformation 

1 0 t=-~y 

m A 2 
r= R + ay '+  7 ~  (y' / 2 + ~ [(y:/~ +(? /~]  

ir 1 2 A , 2  O = ~ + ~ y  ----~y y 

1 3 A 1 3  
q0 = ~ y  -- - ~ y  y with 

so that, in a small neighborhood of the line (C), the metric (4) takes the 
form 

m ds2=(l+2gy')(dy~ with g =  R2 A 

(6) 

up to the second-order corrections in the coordinates yi. 
The metric associated with a constant, static, homogeneous gravita- 

tional field is well known. It is convenient to use the following form: 

e,2=(l+g~')=(a~~ ~-(d~') =-(a~ ~)=-(a~') ~ (7) 

Comparing (7) with (6), we see that the two metrics coincide in the small 
neighborhood of the line (C), if we neglect the quadractic terms in ~i. Thus 
Schwarzschild metric (4) allows us to define a homogeneous gravitational 
field described locally by the metric (6) and characterized by the accelera- 
tion: 

g i ~ !  i 
R2 A ~ (8) 
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It is known that the coordinate system (~o, ~)  is related to the inertial 
coordinate system by the formula 

1 ~l /0=(g+ ) sinh(g~0) 
1 ~l 

x t = ( g +  )cosh(g~ ~ 

X 2 : ~2 

x3=~  3 (9) 

but the coordinate system (~0, ~)  covers only a part of Minkowski space 
defined by x t + x ~ >0 and x I - x ~ <0. 

We are interested in determining the electrostatic potential in the small 
neighborhood described with the metric (6) with the help of the principle of 
equivalence. The electromagnetic field generated by a uniformly accelerated 
point charge q has been a subject of considerable investigation. But as 
clearly noted by Boulware (1980), in the region of Minkowski space covered 
by the coordinates (~0, ~i) there is no problem. Using the transformations of 
coordinate systems (9), the electromagnetic field generated by a uniformly 
accelerated point charge is expressed in coordinates (~0,~/) (Rohrlich, 
1963). The electrostatic potential coincides with the one found by Whittaker 
(1927) corresponding to a point charge at rest in the homogeneous gravita- 
tional field. By restriction to a small neighborhood of the line ~g= 0, we 
obtain the following potential: 

Vw=q 1 + ( 1 / 2 ) g ~ '  (lO) 

According to the principle of equivalence, the expression (10) would be the 
electrostatic potential in the neighborhood of the point charge in the 
Schwarzschild space-time. 

3. POTENTIAL FROM SCHWARZSCHILD SPACE-TIME 
ANALYSIS 

In Schwarzschild space-time, the electrostatic potential which has as its 
source a point charge has been determined by Linet (1976) with the help of 
the determination in closed form by Copson (1928) of the elementary 
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solution in Hadamard's sense of the equation of potential. The electrostatic 
potential of a point test charge q held at rest at the point r = R, 0 = rr/2, 
and r =0  has the following expressions: 

( r -- m )( R - m ) -  m2 sin 0cos qo 
V = q  

R r [ ( r - m )  2 + ( R - m ) 2 - m 2 - Z ( r - m )  

•  - m) sin0cos ~o + m2sin 2 0cos 2 qo] i/z 

m 

+ q R r  

(11) 

The first term, which we note V o is the potential of Copson (1928) in 
standard coordinates and the second term must be added in order to satisfy 
the boundary conditions at infinity: V has the asymptotic form q / r  for 
/- ----~ ~ .  

In the small neighborhood of the line (C) we transform (11) into the 
coordinate system (y0, yi) introduced by the formula (5). Then, the electro- 
static potential (11) has the following expression: 

l + ( 1 / 2 ) g y  I m 1 
V = q [ [  )FlY 1 '2+(y2)  2+(y3)2] ' / z - q - - ~ y  (12) 

We note that the first term in (12) comes from the potential V c. Now, we 
consider V given by (12) as the local electrostatic potential of a point charge 
at rest in a constant, static, homogeneous gravitational field. 

4. DISCUSSION AND CONSEQUENCES 

Comparing (10) with (12), we see that the two methods described above 
do not give the same electrostatic potential within a sufficiently small 
neighborhood of the point charge. We remark that V W and V c coincide but 
in (12) a supplementary term 

m 1 
- q - - ~ y  (13) 

exists and it is regular at the position of the charge. Clearly the potentials 
(10) and (12) satisfy locally the same equation in our small region. But we 
recall that (13) arises from the second term in (11) added in order to satisfy 
the boundary conditions at infinity in the global space-time. Consequently, 
the principle of equivalence is not valid. 

The important thing to notice is that the first term in (12) is the 
self-field of the point charge with a similar interpretation as Minkowski 
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space. Thus, all effects giving a violation of the principle of equivalence 
come from (13). For example, we are now in a posit ion to calculate the 
acceleration due to gravity on a point charge. We have already noted the 
acceleration (8) which is valid for a massive particle. For  a charged particle, 
we have also the Lorentz force. Beside the self-force already mentioned and 
that we have not to consider, a force arising from the electric field induced 
by the potential (13) has the following expression: 

f i  _2 m ~i = t /  -R--~o I (14) 

We rediscover in the coordinate system (y0, y i )  the recent result of Smith 
and Will (1980). We remark that the authors use a local freely falling frame. 
Their method is completely different because (14) appears as the conse- 
quence of the procedure of renormalization in curved space. 

The method we have adopted here can be extended, mutatis  mutandis,  
in some static space-times where the electrostatic potential is also known in 
closed form: Brans-Dicke (Linet and Teyssandier, 1979) and Reissner-  
NordstrOm (L6aut6 and Linet, 1976). On the other hand, the problem of 
electric or magnetic multipoles is now under consideration. 
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